数字化变电站电子式互感器的应用_论文发表__墨水学术,论文发表,(2)
分类:电力论文范文 时间:关注:(1)
滤波、积分变换及A/D转换后变为数字信号,通过电光转换(LED)电路将数字信号变为光信号,然后通过光纤将数字光信号送至二次侧供继电保护和电能计量等设备用。
2.1.2低功率电流互感器
LPCT仍然是基干电磁感应原理的CT。原理图见下图,它由一个一次绕组,一个很小的铁心和与取样电阻Rsh相连的具有最小损耗的二次绕组组成。Rsh是二次绕组的一个组成部分,起着将电流输出转换成电压输出的作用。
与传统CT相比.LPCT的特别之处在于所用的铁心材料是微晶合金铁心,而不是硅钢片。这种铁心是用铁镍合金钢片制成,采用了特殊的退火工艺。LPCT的铁心在弱磁路时具有高磁导率,可使其在较小的截面下互感器测量绕组即可满足精度要求。因此,LPCT的尺寸较传统CT大大减小,即使是与玻莫合金相比,密度和叠片系数均低于玻莫合金铁心.在满足同样技术条件情况下,制造成本可以低1/3左右,重量轻1/4以上,但比玻莫合金铁心具有更宽的线性范围。由于LPCT损耗小,使得在测量很大的电流时(即使是短路电流时)也有较高的准确度而不会饱和,因此LPCT具有较宽的测量范围,在一定的应用领域内(例如一次电流从几十安到几千安),一个铁心即可同时满足0.2级测量及5P20保护的要求。LPCT的尺寸较传统CT大为缩小,同时由于二次绕组集成了取样电阻,也不存在开路的危险。
2.1.3有源电子式电压互感器
有源光电压互感器采用电容分压、电阻分压或电容电阻分压等原理,利用与有源电流互感器类似的电子模块处理信号,并利用光纤传输信号。
2.2无源电子式电流互感器
2.2.1光学电流互感器
无源光互感器采用了Faraday磁光效应。Faraday磁光效应原理由于待测电流产生的磁场的作用,当一束线性偏振光通过放置在磁场中的Faraday材料(如磁光玻璃)时,若磁场方向与光的传播方向相同,则光的偏振面将产生旋转,旋转角正比于磁场强度,沿偏振光通过材料路径的线积分。角度与被测电流成正比,利用检偏器将角度的变化转换为输出光强的变化,经光电变换及相应的信号处理便可求得被测电流。
2.2.2光学电压互感器
无源光互感器采用了Pockels电光效应。发光二极管发出的光经起偏器后为一线性偏振光,在外加电压作用下,线偏振光经电光晶体后发生双折射,双折射两光束的相位差与外加电压有确定关系。相位差与外加电压成正比,利用捡偏器将相位差的变化转换为输出光强的变化,经光电变换及相应的信号处理便可求得被测电压。
2.3有源、无源电子式互感器的比较
有源电子式互感器的关键技术在于电源供电技术、远端电子模块的可靠性、采集单元的可维护性。基于传统互感器的运行经验,可不考虑Rogowski线圈和分压器(电阻、电容或电感)故障的维护。GIS式电子式互感器直接接人变电站直流电源,不需要额外供电,采集单元安装在与大地紧密相连的接地壳上。这种方式抗干扰能力强.更换维护方便,采集单元异常处理不需要一次系统停电。而对于独立式电子式互感器,在高压平台上的电源及远端模块长期工作在高低温频繁交替的恶劣环境中,其使用寿命远不如安装在主控室或保护小室的保护测控装置,还需要积累实际工程经验;另外,当电源或远端模块发生异常、需要维护或更换时,需要一次系统停电处理无源式电子式互感器的关键技术在于光学传感材料的稳定性、传感头的组装技术、微弱信号调制解调、温度对精度的影响、震动对精度的影响、长期运行的稳定性。但由于无源电子式互感器的电子电路部分均安装在主控室或保护小室,运行条件优越,更换维护方便。有源或无源电子式互感器的应用,均大大降低了占地面积,减少了传统互感器的二次电缆连线,是互感器的发展方向。无源电子式互感器可靠性高、维护方便,是独立安装的互感器的理想解决方案。
3电子式互感器的优点